261 research outputs found

    The Holevo-Schumacher-Westmoreland Channel Capacity for a Class of Qudit Unital Channels

    Get PDF
    The Holevo-Schumacher-Westmoreland (HSW) classical (entanglement-unassisted) channel capacity for a class of qudit unital channels is shown to be C = log2(d) - Smin, where d is the dimension of the qudit, and Smin is the minimum possible von Neumann entropy at the channel output. The HSW channel capacity for tensor products of this class of unital qudit channels is shown to obey the same formula.Comment: 21 Pages. No Figure

    On the distinguishability of random quantum states

    Get PDF
    We develop two analytic lower bounds on the probability of success p of identifying a state picked from a known ensemble of pure states: a bound based on the pairwise inner products of the states, and a bound based on the eigenvalues of their Gram matrix. We use the latter to lower bound the asymptotic distinguishability of ensembles of n random quantum states in d dimensions, where n/d approaches a constant. In particular, for almost all ensembles of n states in n dimensions, p>0.72. An application to distinguishing Boolean functions (the "oracle identification problem") in quantum computation is given.Comment: 20 pages, 2 figures; v2 fixes typos and an error in an appendi

    Equally-distant partially-entangled alphabet states for quantum channels

    Get PDF
    Each Bell state has the property that by performing just local operations on one qubit, the complete Bell basis can be generated. That is, states generated by local operations are totally distinguishable. This remarkable property is due to maximal quantum entanglement between the two particles. We present a set of local unitary transformations that generate out of partially entangled two-qubit state a set of four maximally distinguishable states that are mutually equally distant. We discuss quantum dense coding based on these alphabet states.Comment: 7 revtex pages, 2 eps figures, to appear in Phys. Rev. A 62, 1 November (2000

    Lossless quantum data compression and variable-length coding

    Full text link
    In order to compress quantum messages without loss of information it is necessary to allow the length of the encoded messages to vary. We develop a general framework for variable-length quantum messages in close analogy to the classical case and show that lossless compression is only possible if the message to be compressed is known to the sender. The lossless compression of an ensemble of messages is bounded from below by its von-Neumann entropy. We show that it is possible to reduce the number of qbits passing through a quantum channel even below the von-Neumann entropy by adding a classical side-channel. We give an explicit communication protocol that realizes lossless and instantaneous quantum data compression and apply it to a simple example. This protocol can be used for both online quantum communication and storage of quantum data.Comment: 16 pages, 5 figure

    Realization of a collective decoding of codeword states

    Full text link
    This was also extended from the previous article quant-ph/9705043, especially in a realization of the decoding process.Comment: 6 pages, RevTeX, 4 figures(EPS

    Noisy Preprocessing and the Distillation of Private States

    Get PDF
    We provide a simple security proof for prepare & measure quantum key distribution protocols employing noisy processing and one-way postprocessing of the key. This is achieved by showing that the security of such a protocol is equivalent to that of an associated key distribution protocol in which, instead of the usual maximally-entangled states, a more general {\em private state} is distilled. Besides a more general target state, the usual entanglement distillation tools are employed (in particular, Calderbank-Shor-Steane (CSS)-like codes), with the crucial difference that noisy processing allows some phase errors to be left uncorrected without compromising the privacy of the key.Comment: 4 pages, to appear in Physical Review Letters. Extensively rewritten, with a more detailed discussion of coherent --> iid reductio

    Mixed quantum state detection with inconclusive results

    Get PDF
    We consider the problem of designing an optimal quantum detector with a fixed rate of inconclusive results that maximizes the probability of correct detection, when distinguishing between a collection of mixed quantum states. We develop a sufficient condition for the scaled inverse measurement to maximize the probability of correct detection for the case in which the rate of inconclusive results exceeds a certain threshold. Using this condition we derive the optimal measurement for linearly independent pure-state sets, and for mixed-state sets with a broad class of symmetries. Specifically, we consider geometrically uniform (GU) state sets and compound geometrically uniform (CGU) state sets with generators that satisfy a certain constraint. We then show that the optimal measurements corresponding to GU and CGU state sets with arbitrary generators are also GU and CGU respectively, with generators that can be computed very efficiently in polynomial time within any desired accuracy by solving a semidefinite programming problem.Comment: Submitted to Phys. Rev.

    Novel matching lens and spherical ionizer for a cesium sputter ion source

    No full text
    The beam optics of a multi-sample sputter ion source, based on the NECMCSNICS, has been modified to accommodate cathode voltages higher than 5 kV and dispenses with the nominal extractor. The cathode voltage in Cs sputter sources plays the role of the classical extractor accomplishing the acceleration of beam particles from eV to keV energy, minimizing space charge effects and interactions between the beam and residual gas. The higher the cathode voltage, the smaller are these contributions to the emittance growth. The higher cathode voltage also raises the Child’s law limit on the Cs current resulting in substantially increased output. The incidental focusing role of the extractor is reallocated to a deceleration Einzel lens and the velocity change needed to match to the pre-acceleration tube goes to a new electrode at the tube entrance. All electrodes are large enough to ensure that the beam fills less than 30% of the aperture to minimize aberrations. The improvements are applicable to sputter sources generally

    Quantum privacy and quantum coherence

    Full text link
    We derive a simple relation between a quantum channel's capacity to convey coherent (quantum) information and its usefulness for quantum cryptography.Comment: 6 pages RevTex; two short comments added 7 October 199

    The capacity of the noisy quantum channel

    Get PDF
    An upper limit is given to the amount of quantum information that can be transmitted reliably down a noisy, decoherent quantum channel. A class of quantum error-correcting codes is presented that allow the information transmitted to attain this limit. The result is the quantum analog of Shannon's bound and code for the noisy classical channel.Comment: 19 pages, Submitted to Science. Replaced give correct references to work of Schumacher, to add a figure and an appendix, and to correct minor mistake
    • …
    corecore